€ 19,00


Accelerating research on 3D medical image classification and regression

Luuk Boulogne • Boek • paperback

  • Samenvatting
    Free download at https://doi.org/10.54195/9789465150277

    This thesis describes the development and evaluation of deep learning approaches for analyzing three-dimensional medical images, with a particular focus on thoracic CT scans. The work emphasizes practical clinical applications while advancing reproducible research practices in medical image analysis, particularly through public datasets, standardized evaluation frameworks, and openly available implementation code. It introduces a method that can estimate global measurements while simultaneously determining regional contributions, demonstrated through applications in COVID-19 severity assessment and pulmonary function testing. The research presents a systematic evaluation of algorithm components for automatic COVID-19 grading from CT. It describes a medical image analysis challenge structure aimed at producing reusable methods that can be trained on private datasets and shows the viability of this challenge structure through a challenge for classifying severe COVID-19 from CT scans. To promote development of more generalizable solutions, a comprehensive database for 3D medical image classification is introduced, featuring standardized data formats and evaluation methods across multiple imaging modalities and anatomical regions.
  • Productinformatie
    Binding : Paperback
    Distributievorm : Boek (print, druk)
    Formaat : 170mm x 240mm
    Aantal pagina's : 171
    Uitgeverij : Radboud University Press
    ISBN : 9789465150277
    Datum publicatie : 02-2025
  • Inhoudsopgave
    niet beschikbaar
  • Reviews (0 uit 0 reviews)
    Wil je meer weten over hoe reviews worden verzameld? Lees onze uitleg hier.

Dissertations
published by

€ 19,00



3-4 werkdagen
Veilig betalen Logo
14 dagen bedenktermijn
Delen 
×
SERVICE
Contact
 
Vragen